Sufficient Dimensionality Reduction

نویسندگان

  • Amir Globerson
  • Naftali Tishby
چکیده

Dimensionality reduction of empirical co-occurrence data is a fundamental problem in unsupervised learning. It is also a well studied problem in statistics known as the analysis of cross-classified data. One principled approach to this problem is to represent the data in low dimension with minimal loss of (mutual) information contained in the original data. In this paper we introduce an information theoretic nonlinear method for finding such a most informative dimension reduction. In contrast with previously introduced clustering based approaches, here we extract continuous feature functions directly from the co-occurrence matrix. In a sense, we automatically extract functions of the variables that serve as approximate sufficient statistics for a sample of one variable about the other one. Our method is different from dimensionality reduction methods which are based on a specific, sometimes arbitrary, metric or embedding. Another interpretation of our method is as generalized multi-dimensional non-linear regression, where rather than fitting one regression function through two dimensional data, we extract d-regression functions whose expectation values capture the information among the variables. It thus presents a new learning paradigm that unifies aspects from both supervised and unsupervised learning. The resulting dimension reduction can be described by two conjugate d-dimensional differential manifolds that are coupled through Maximum Entropy I-projections. The Riemannian metrics of these manifolds are determined by the observed expectation values of our extracted features. Following this geometric interpretation we present an iterative information projection algorithm for finding such features and prove its convergence. Our algorithm is similar to the method of “association analysis” in statistics, though the feature extraction context as well as the information theoretic and geometric interpretation are new. The algorithm is illustrated by various synthetic co-occurrence data. It is then demonstrated for text categorization and information retrieval and proves effective in selecting a small set of features, often improving performance over the original feature set.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2D Dimensionality Reduction Methods without Loss

In this paper, several two-dimensional extensions of principal component analysis (PCA) and linear discriminant analysis (LDA) techniques has been applied in a lossless dimensionality reduction framework, for face recognition application. In this framework, the benefits of dimensionality reduction were used to improve the performance of its predictive model, which was a support vector machine (...

متن کامل

An Information Geometric Framework for Dimensionality Reduction

This report concerns the problem of dimensionality reduction through information geometric methods on statistical manifolds. While there has been considerable work recently presented regarding dimensionality reduction for the purposes of learning tasks such as classification, clustering, and visualization, these methods have focused primarily on Riemannian manifolds in Euclidean space. While su...

متن کامل

Dimensionality Reduction with Subspace Structure Preservation

Modeling data as being sampled from a union of independent subspaces has been widely applied to a number of real world applications. However, dimensionality reduction approaches that theoretically preserve this independence assumption have not been well studied. Our key contribution is to show that 2K projection vectors are sufficient for the independence preservation of any K class data sample...

متن کامل

A Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters

Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2003